Module 07 – Mid-Semester Review
Mengikat Simpul Aljabar & Finansial (Persiapan UTS)
| Kode Mata Kuliah | : MNJ104 |
| Topik | : Review Ch 1, 2, 5 (Aljabar & Finansial) |
| Catatan | : Materi Matriks (Ch 6) dibahas setelah UTS |
Sesi ini menarik benang merah. Kita akan melihat bagaimana Fungsi Linear & Eksponen menjadi dasar perhitungan Keuangan (Bunga & Cicilan).
Poin Kunci untuk UTS:
1. The Toolkit (Aljabar)
Pastikan paham sifat Eksponen (untuk hitung bunga) dan Logaritma (untuk hitung waktu/tenor).
2. The Logic (Fungsi)
Bunga Tetap = Fungsi Linear (Garis Lurus).
Bunga Majemuk = Fungsi Eksponensial (Kurva Melengkung).
3. The Application (Finance)
Wajib bisa membedakan 3 kasus soal cerita:
- Lump Sum: Setor sekali, ambil nanti (Compound Interest).
- Annuity: Nabung/Bayar rutin tiap bulan.
- Amortization: Pelunasan utang (Bunga menurun, Pokok naik).
“Jangan bingung rumus. Identifikasi dulu: Apakah transaksinya sekali atau berulang?”
Tags: #ReviewUTS #MatematikaBisnis #TimeValueOfMoney #Aljabar #AurinoWorks
🔍 Review 1: Mencari ‘n’ dengan Logaritma
Masalah tersulit dalam UTS biasanya bukan menghitung hasil akhir, tapi mencari berapa lama waktu yang dibutuhkan untuk mencapai target (n).
20 = 10 (1 + 0.08)n
2 = (1.08)n
log(2) = n . log(1.08)
n = log(2) / log(1.08)
Note: Tanpa logaritma, mahasiswa hanya bisa “menebak-nebak” angka n. Logaritma adalah alat presisi manajer keuangan.
📈 Review 2: Membedakan Karakteristik Fungsi
Mahasiswa sering tertukar antara bunga flat dan bunga majemuk. Gunakan logika grafik:
| Jenis Bunga | Model Matematika | Visualisasi |
|---|---|---|
| Flat / Simple | Linear: y = a + bx | Garis Lurus (Tetap) |
| Majemuk / Compound | Eksponen: y = a(b)x | Kurva Melengkung (Jangkauan Jauh) |
⚠️ Tips UTS: Jika soal menyebutkan “reinvestasi” atau “bunga berbunga”, otomatis gunakan Eksponen!
🛠️ Decision Matrix: Pilih Rumus yang Tepat
Di lembar ujian, identifikasi Aliran Uang-nya:
Uang bergerak sekali (setor di awal, diamkan).
👉 Rumus: S = P(1+i)n
Uang bergerak rutin (nabung tiap bulan).
👉 Rumus: Sn = R […]
Punya hutang besar di awal, dicicil sampai nol.
👉 Rumus: An = R […] atau Excel PMT
📝 Pre-UTS Challenge
Uji kesiapan Anda. Tutup catatan, kerjakan dalam 5 menit.
Soal:
Anda ingin memiliki uang Rp 500 Juta saat pensiun 20 tahun lagi. Jika bunga investasi 12% per tahun, berapa yang harus Anda tabung setiap bulan mulai hari ini?
👁️ Lihat Analisis Langkah
- Identifikasi: Transaksi rutin tiap bulan = Annuity.
- Target: Masa depan (Future Value) = Rp 500 Juta.
- Variabel: i = 12%/12 = 0.01 | n = 20*12 = 240.
- Rumus: Gunakan rumus Sn untuk mencari R (angsuran).
Dikembangkan secara kolaboratif oleh Associate Professor melalui platform AurinoWorks, didukung teknologi Google Gemini & ChatGPT.
#ReviewUTS #MatematikaBisnis #MNJ104 #FinanceMath #Aurinoworks
| Status Modul | : Milestone (Tengah Semester) |
| Cakupan Materi | : Algebra Review, Functions, Finance I & II, Matrix Algebra. |
| Target | : Penguasaan Alat Analisis Bisnis Dasar & Keuangan. |
1. Peta Kompetensi Paruh Pertama
Simak ringkasan alat analisis yang telah kita pelajari selama 6 minggu terakhir:
Mencari BEP (Break Even Point), Equilibrium Pasar, dan dampak pajak/subsidi terhadap harga.
Present Value, Future Value, Anuitas, dan Amortisasi Hutang (KPR/Cicilan).
Menyelesaikan sistem persamaan linier banyak variabel (SPL) secara efisien.
2. Checklist Persiapan UTS
- ✅ Bisa mengubah soal cerita bisnis menjadi model matematika (Persamaan Linear).
- ✅ Paham perbedaan bunga majemuk diskrit vs kontinu.
- ✅ Mampu menyusun tabel amortisasi sederhana.
- ✅ Bisa melakukan operasi matriks (Invers & Determinan 2×2 atau 3×3).
3. Simulasi Soal UTS (Step-by-Step)
Gunakan soal-soal berikut sebagai tolok ukur kesiapan Anda.
Diketahui fungsi Permintaan P = 50 – 2Q dan fungsi Penawaran P = 10 + 2Q. Pemerintah mengenakan pajak sebesar t = 4 per unit.
Tentukan harga dan kuantitas keseimbangan setelah pajak.
Buka Pembahasan
Fungsi Penawaran baru: Ps’ = 10 + 2Q + 4 = 14 + 2Q.
Langkah 2 (Keseimbangan Pd = Ps’):
50 – 2Q = 14 + 2Q
4Q = 36 → Q = 9.
Langkah 3 (Cari Harga):
P = 50 – 2(9) = 50 – 18 = 32.
Jadi, keseimbangan setelah pajak adalah (9, 32).
Anda ingin membeli mobil seharga Rp 300.000.000 dengan mencicil selama 5 tahun (60 bulan). Jika bunga bank adalah 12% per tahun (1% per bulan), berapakah cicilan bulanan Anda?
Buka Pembahasan
Rumus Anuitas (A): PV = A ⋅ [ (1 – (1+i)-n) / i ]
300.000.000 = A ⋅ [ (1 – (1.01)-60) / 0.01 ]
300.000.000 = A ⋅ [ (1 – 0.5504) / 0.01 ]
300.000.000 = A ⋅ 44.955
A ≈ Rp 6.673.340 per bulan.
Tentukan nilai x dan y yang memenuhi sistem berikut menggunakan metode invers matriks:
2x + y = 10
x + 3y = 15
Buka Pembahasan
A = [[2, 1], [1, 3]], X = [x, y], B = [10, 15]
1. Cari Determinan |A|: (2⋅3) – (1⋅1) = 6 – 1 = 5.
2. Cari Invers A-1: (1/5) ⋅ [[3, -1], [-1, 2]]
3. Hitung X = A-1B:
x = (1/5) ⋅ (3⋅10 + -1⋅15) = (1/5) ⋅ (15) = 3.
y = (1/5) ⋅ (-1⋅10 + 2⋅15) = (1/5) ⋅ (20) = 4.
Solusi: x = 3, y = 4.
Selesai mempelajari semua modul? Saatnya menguji diri. Sukses untuk UTS Anda!
#Aurinoworks #MNJ104 #MidSemesterReview